ZP8396, a novel amylin analogue induces weight loss in DIO rats with a formulation space at physiological pH

Skarbaliene J¹, Lundqvist J¹, Nielsen A F¹ Mossing J T¹ and Villadsen J S¹ ¹Research and Development, Zealand Pharma A/S, Sydmarken 11, 2860 Søborg, Denmark

AIM

The aim of the study was to explore formulation space of ZP8396 and to investigate in-vivo efficacy of ZP8396 formulated at physiological pH in lean, and diet-induced obese (DIO) rats

CONCLUSIONS

- ZP8396, at concentration supporting pharmacological relevant human doses, is stable in an aqueous formulation at physiological pH and shows no aggregation potential
- **ZP8396 is compatible with different** physiological buffer systems and isotonic agents, commonly used for commercial medicinal products which provides opportunities for co-formulation with other peptides for optimal body weight loss
- Formulation of ZP8396 at physiological pH induces a significant body weight loss in both lean and DIO rats

For more information please visit www.ZealandPharma.com **CONTACT INFORMATION** jvilladsen@zealandpharma.com

INTRODUCTION

• Amylin acts via amylin receptors in the hindbrain to suppress appetite, which makes it a promising candidate for the development of novel pharmacotherapies for weight management.

ZP8396, currently in phase 1, is a long-acting amylin analogue with pl of 4.36 designed to improve solubility and stability.

• ZP8396 is soluble and chemically stable in an aqueous formulation at concentrations supporting pharmacologically relevant doses.

METHODS

 Fibrilation was measured in a standard ThioflavinT (ThT) assay at 40°C with agitation and data collection every 10 minutes for 60 hours.

• Physical stability after accelerated storage was measured by visual appearance, UV absorbance at 325nm (turbidity), Size Exclusion Chromatography (SEC, covalent oligomers), Dynamic Light Scattering (DLS, peptide particle size), or one-point ThT assay (fibrillation).

• In vivo efficacy was measured after single sc administration of ZP8396 (0,5, 3, 30, 300 nmol/kg) to lean rats and after 21 days of dosing with ZP8396 (1, 3, 10 and 15 nmol/kg, s.c., every 2nd day) in DIO rats. ZP8396 was formulated in 20 mM Phosphate pH 7, 260 mM mannitol buffer.

RESULTS

No signs of fibrillation of ZP8396 in aqueous formulation in a physiologically relevant pH range and no pH effect on the peptide particle size in formulation

Table 1: Lag-time in fluorescent ThT assay with physical stress at 40°C and peptide particle size in formulation.

pH ¹	5.8	6.0	6.3	6.6	6.8	7.0
ThT lag time (h)	> 60	> 60	> 60	> 60	> 60	> 60
Peptide particle size (nm) ²	3.3	4.0	3.2	3.0	3.7	3.0

¹ pH in TRIS buffered isotonic aqueous solution of ZP8396 (1 mg/ml).

² The initial peptide particle size (z-average) was evaluated by Dynamic Light Scattering (DLS).

h. hour: ThT. ThioflavinT.

RESULTS

ZP8396 at concentrations of 1-10 mg/mL is physically stable during 1 month storage at 40°C or 3 months storage at 25°C in formulations with different buffer systems (5-20mM), commonly used tonicity agents, and physiologically relevant pH range (6.5 - 7.4).

Table 2: Physical stability of 1-10 mg/mL ZP8396 in 5-20 mM physiological buffer systems including commonly used tonicity agents, e.g Sodium Chloride, Mannitol or Propylene glycol. Data reflects 1 month storage at 40°C or 3 months storage at 25°C.

Buffer system	Tested pH range	Aggregation ¹	Peptide particle size (nm) ²	Covalent oligormers ³
Histidine	6.5 - 7.6	Not detected	1.9 - 3.1	≤ 0.2%
Phosphate	6.1 - 7.4	Not detected	2.2 - 4.2	≤ 0.2%
TRIS	6.6 - 7.4	Not detected	2.2 - 3.5	≤ 0.3%

¹ Aggregation was evaluated by static ThT assay, UV absorbance at 325nm and/or visual appearance ² The peptide particle size (z-average) was evaluated by DLS.

³ Fraction of covalent oligomers was measured by SEC.

RESULTS

ZP8396 is physically stable during 4 weeks rotation at room temperature in 4 mg/mL aqueous formulations at a physiologically relevant pH range

Table 3: Physical stability of 4 mg/mL ZP8396 formulations rotated 4 weeks at room temperature in Type 1 glass vials. Response parameters included ThT, appearance, covalent oligomers by SEC and peptide particle size (Z-average) by DLS.

Formulation ¹	ThT assay	Appearan ce ²	Covalent oligormers (SEC)	Peptide particle size (DLS)
Phosphate buffer, pH 6.1	No fibrillation ³	Clear	< 0.2%	No increase over time (range 3.2 nm - 4.8 nm)
Phosphate buffer, pH 6.5	No fibrillation ³	Clear	< 0.2%	No increase over time (range 3.4 nm - 5.1 nm)
TRIS buffer, pH 6.9	No fibrillation ³	Clear	< 0.2%	No increase over time (range 3.1 nm - 4.5 nm)

¹ Tonicity controlled by commercially relevant tonicity agent, e.g. Sodium Chloride or Mannitol

² Appearance was evaluated visually and by UV absorbance at 325nm.

³ No significant increase in relative fluorescent units (RFU) during study.

RESULTS

ZP8396 induces significant body weight loss in both lean and DIO rats

Β.

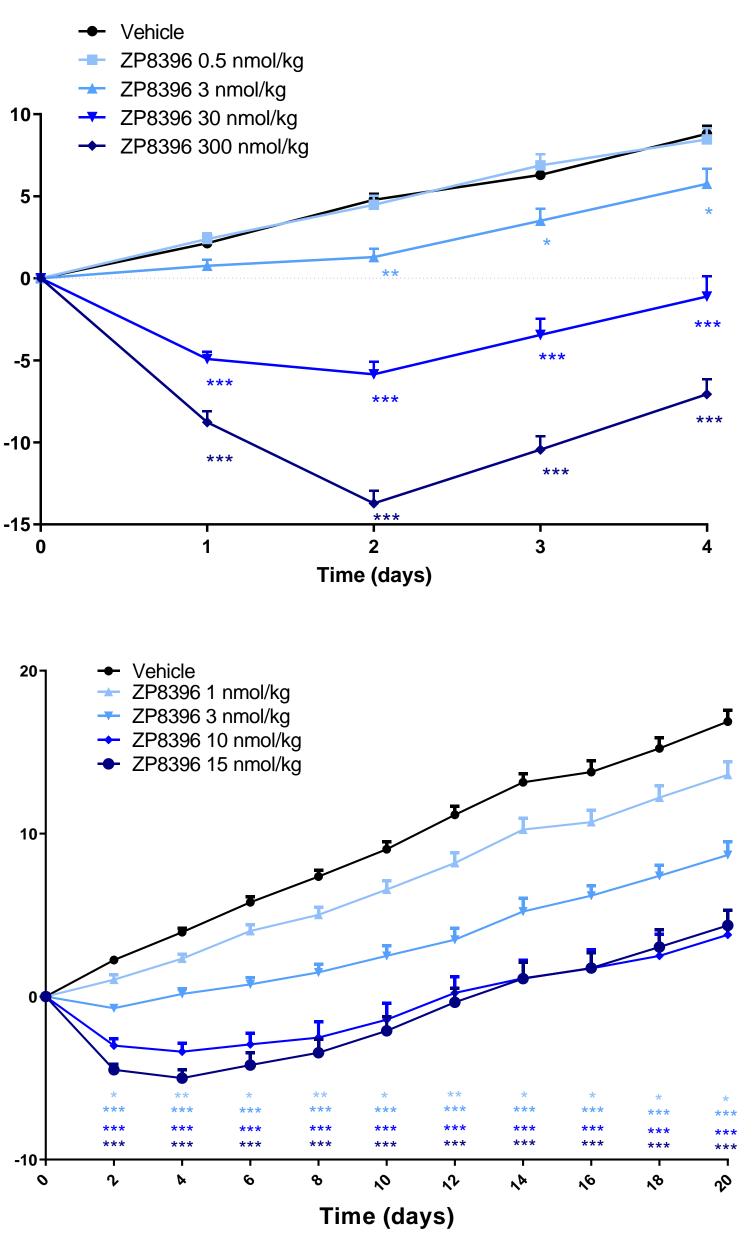


Figure 1: The effects of treatment with ZP8396 or vehicle on body weight change from day 0 (%). (A) Body weight change in lean rats, (B), Body weight change in DIO rats. Data are mean values with SEM (n= 8-10/group). Data were compared by 2-way ANOVA followed by Bonferroni multiple comparison test vs. vehicle group. *p<0.05, **p<0.01, ***p<0.001 vs. vehicle.