Anti-diabetic potential of a novel, long-acting amylin analogue ZP8396 in ZDF rats

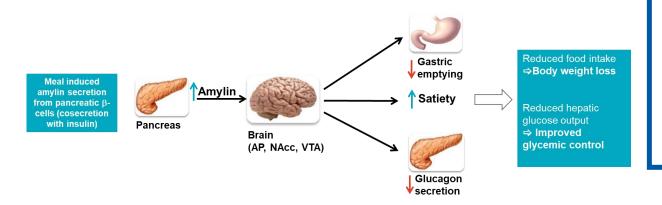
Jolanta Skarbaliene on behalf of the Zealand Pharma team ADA 2022 82nd Scientific Sessions **Presenter disclosure**

Jolanta Skarbaliene

Employee at Zealand Pharma A/S Stock/shareholder: Zealand Pharma A/S

Photography allowed

You may take photos of this presentation. Please be considerate of others in the session.


Background

Human amylin¹

Amylin is a 37-amino acid peptide hormone mainly produced in the pancreatic beta cells and co-secreted with insulin in response to ingested nutrients

The main actions:

- Acts as a satiation signal
- Impacts reward system
- Glucose regulation (decrease glucagon)
- Delays gastric emptying

ZP8396 – amylin analogue in clinical development for weight management

- Long-acting, acylated human amylin analogue
- ZP8396 exhibits high *in vitro* potency on the human CT-R, AMY-R1 and AMY-R3
- Designed to improve solubility, minimize fibrillation and allow for co-formulation with other peptides, including GLP-1
- Significant weight loss in pre-clinical obesity models as monotherapy or in combination with GLP-1 analogues

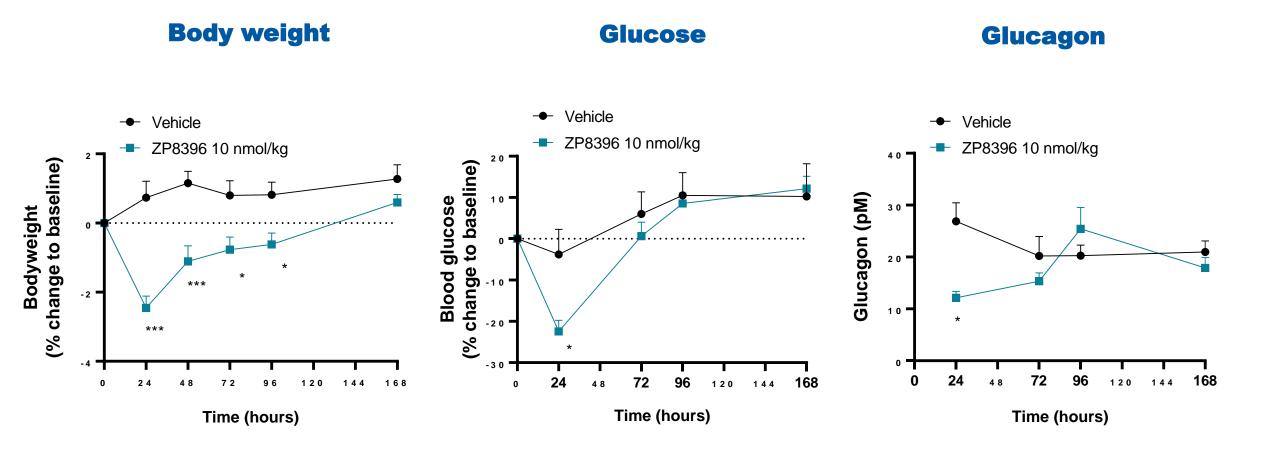
Pharmacokinetic parameters of ZP8396

- The pharmacokinetic profile of ZP8396 was fully characterized in three species.
- The plasma half-life (T_{1/2}) from the various species indicates that the T_{1/2} in humans would be >130 hours and compatible with once-weekly dosing.

	SC parameters					
	t _½ , (h)	T _{max} (h)	Bioavailability (%)			
Mouse	26.7	8	79			
Rat	33.9	24	69			
Dog	>130*	48	73			

* i.v. data

In vivo pharmacological evaluation of ZP8396


The aim of the studies was to investigate the anti-diabetic potential of ZP8396 in Zucker Diabetic Fatty (ZDF) rats.

 Acute effects
The anti-diabetic potential was assessed after a single injection of ZP8396 (s.c., 10 nmol/kg) in ZDF rats

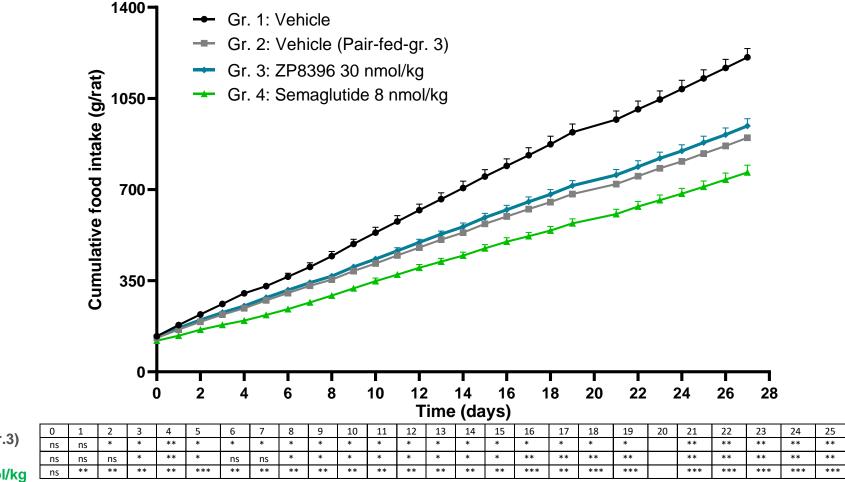
2. Chronic effects The anti-diabetic effects were assessed after a 4-weeks treatment with ZP8396 (s.c., 30 nmol/kg) in ZDF rats

Study 1 – Anti-diabetic potential of ZP8396 in ZDF rats

ZP8396 reduces body weight, lowers blood glucose and plasma glucagon levels after a single injection

Study 2 – Chronic anti-diabetic effects of ZP8396 in ZDF rats Study design

		Gr.1: Vehicle, sc qd						
	Gr. 2: Vehicle, sc qd (Pair fed to match food intake of gr. 3)							
		Gr. 3: ZP8396, 30 nmol/kg, sc ev. 2 nd da	У					
	Gr. 4: Semaglutide, 8 nmol/kg, sc qd							
В	ody v	reight, food and water intake daily						
-3 -	-1) 13 I		21	27	28	29	
	I A	B		C	l D			


A: Baseline characterization (fasting state)

- B: Blood glucose (non fasting state)
- C: IPGTT (fasting state)

D: Pre-termination characterization (fasting state)

Study 2 – Anti-diabetic effects of 4-weeks treatment with ZP8396 in ZDF rats

ZP8396 is effective in lowering cumulative food intake

Gr. 2: Vehicle (Pair-fed-gr.3) Gr. 3: ZP8396 30 nmol/kg Gr. 4: Semaglutide 8 nmol/kg 26

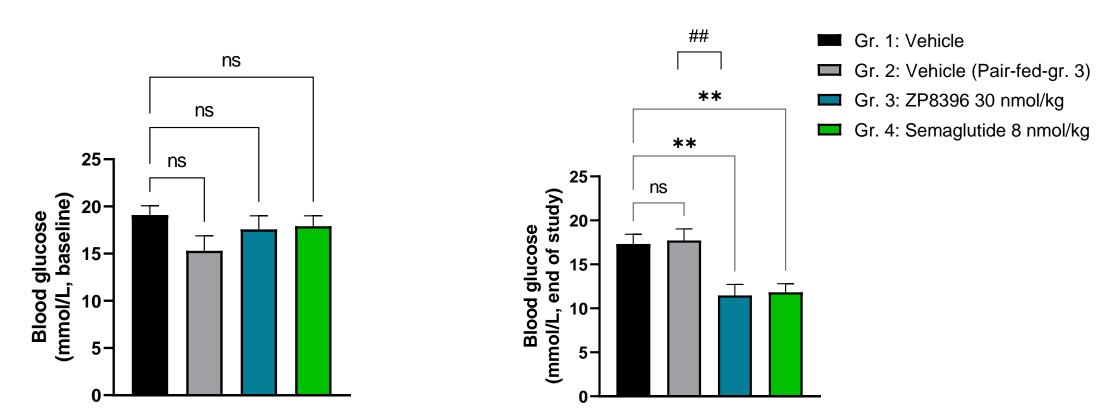
**

**

27

**

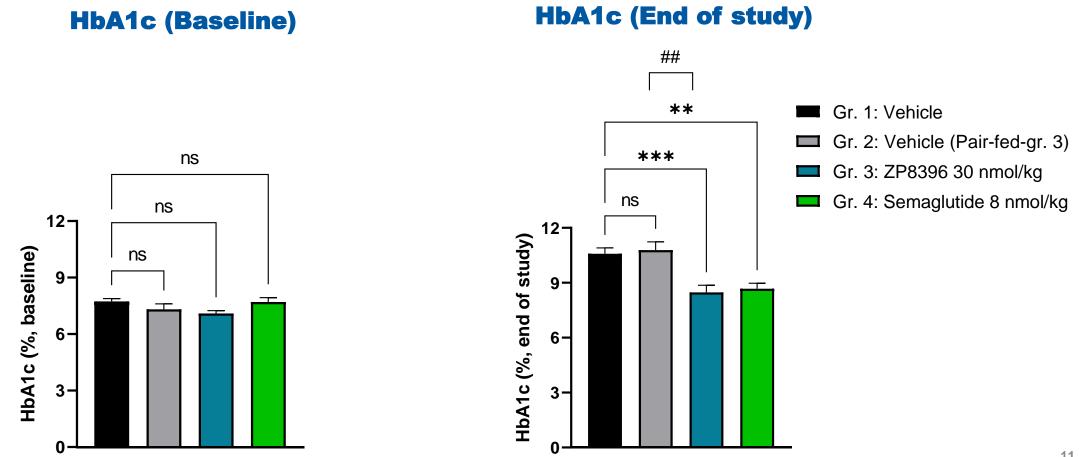
**



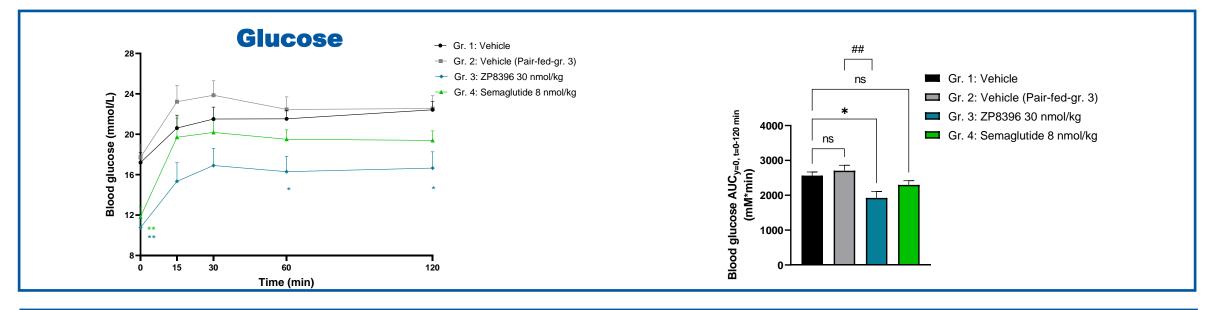
^{*}p<0.05, *p<0.01, **p<0.001, vs. vehicle. Two-way ANOVA followed by Dunnett's multiple comparison test. Data are means \pm SEM. n =6-8.

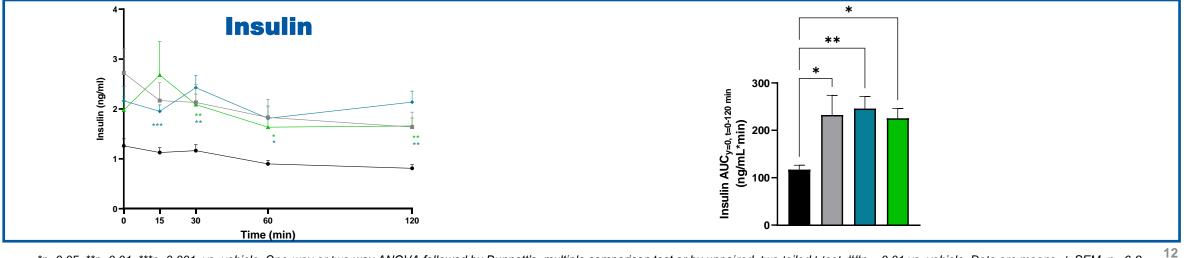
Study 2 – Anti-diabetic effects of 4-weeks treatment with ZP8396 in ZDF rats

ZP8396 is effective in lowering fasting blood glucose levels


Glucose (Baseline)

Glucose (End of study)


Study 2 – Anti-diabetic effects of 4-weeks treatment with ZP8396 in **ZDF** rats


ZP8396 effectively reduces glycated hemoglobin (HbA1c) levels in diabetic rats

Study 2 – Anti-diabetic effects of 4-weeks treatment with ZP8396 in ZDF rats

ZP8396 improves glucose tolerance in diabetic rats during IPGTT

*p<0.05, **p<0.01, ***p<0.001, vs. vehicle. One-way or two-way ANOVA followed by Dunnett's multiple comparison test or by unpaired, two tailed t-test, ##p < 0.01 vs. vehicle. Data are means ± SEM. n =6-8.

Summary: Effects of a novel amylin analogue (ZP8396) in ZDF rats

Single injection of ZP8396

- Reduced body weight
- Lowered blood glucose and plasma glucagon levels

4-weeks treatment with ZP8396

- Lowered both Hb1Ac and blood glucose
- Improved glucose tolerance (as measured by IPGTT)

Key finding:

- When compared to pair-fed animals (with equivalent energy consumption), treatment with ZP8396 improved glycemic control to a greater extent than with pair-feeding alone
- Supports specific drug-mediated treatment effects on glycemic control

Conclusions: Effects of a novel amylin analogue (ZP8396) in ZDF rats

ZP8396 is a long-acting amylin analogue with unique physical-chemical characteristics suitable for formulation at physiologic pH (please see our poster # 1406-P)

ZP8396 has been shown to reduce body weight and is currently in clinical development for the treatment of overweight and obesity

ZP8396 significantly improves glycemic control in ZDF rats which supports the potential for this novel long-acting amylin analogue for the management of diabetes

Thank you!

For your attention